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A test group is a pair (G, T) where G is a partially ordered Abelian group and 
T is a generative antichain in its positive cone. It is shown here that effect algebras 
and algebraic test groups are coextensive, and a method for calculating the 
algebraic closure of a test group is developed. Some computational algorithms 
for studying finite effect algebras are introduced, and the problem of finding 
quotients of effect algebras is discussed. 

Recently, it has come to light that virtually every mathematical structure 
that has been seriously proposed as a model for the propositions, properties, 
questions, events, effects, states, or observables affiliated with a physical 
system can be represented in terms of a partially ordered Abelian group, and 
that the highly developed theory of  such groups can thus be brought to bear 
on problems arising in the experimental sciences (Greechie and Foulis, 1995). 
Although the full impact of  the existence of a strong connection between 
physical systems and partially ordered Abelian groups has yet to be felt, 
and although some progress has already been made (Greechie et al., 1995; 
Ravindran, 1995; Bennett and Foulis, 1995), many technical details have yet 
to be worked out before the connection can be fully exploited. 

A large class of  orthostructures, the so-called interval effect algebras,  
can be represented as order intervals G+[0, u] from 0 to an element u in the 
positive cone G ÷ of  a partially ordered Abelian group G (Bennett and Foulis, 
n.d.); however, in general, G enjoys none of the special properties that 
distinguish those classes of  partially ordered Abelian groups that have been 
most intensively studied, e.g., lattice-ordered groups (Darnel, 1995) and inter- 
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polation groups (Goodearl et al., 1980; Goodearl, 1986; Murphy, 1992). The 
"test groups" introduced in this paper are often lattice ordered or interpolation 
groups and are related to effect algebras as test spaces (Foulis et al., 1993) 
are to orthoalgebras (Foulis et al., 1992). We study the articulation between 
test groups and effect algebras and show that much of the theory of test 
spaces can be extended to test groups. 

Section 1 of  this paper is devoted to a brief review of  some relevant 
facts about partially ordered Abelian groups. The concept of  a test group is 
introduced in Section 2. In Section 3, we show that algebraic test groups 
give rise to effect algebras and that every effect algebra arises in this way. 
We develop an iterative method to calculate the algebraic closure of  a test 
group in Section 4. In Section 5, we prove that the universal group of  an 
effect algebra E is a homomorphic image of an algebraic lattice-ordered test 
group corresponding to a set of generators for E. In Section 6, we sketch a 
basis for the construction of  computational algorithms for dealing with finite 
effect algebras. We close the paper in Section 7 with a brief discussion of  
the problem of  forming quotients of effect algebras. 

1. P A R T I A L L Y  O R D E R E D  A B E L I A N  G R O U P S  

Although most of  the material in this section is well known in the theory 
of  partially ordered Abelian groups (for instance, see Goodearl, 1986), we 
review it here for the convenience of the reader and to establish our notation 
and terminology. In what follows, Abelian groups are understood to be 
additively written. If G is an Abelian group and M C G, we define (M) to 
be the subgroup of G generated by M. 

Let G be an Abelian group and let a, b, c denote elements of G. A 
subset C of  G is called a cone if C + C C C and C f"l - C  = {0}. A cone 
C in G determines a partial order relation <-- on G defined by a --< b iff b - 
a E C, and <- is translation invariant in the sense that a <- b ~ a + c --< 
b + c. Conversely, if --- is a translation-invariant partial order on G, then C 
"= {a ~ GI0  --< a} is a cone in G, called the positive cone determined by 
--<. (The notation := means equal by definition.) In this way, a one-to- 
one correspondence is established between translation-invariant partial order 
relations -< on G and cones C in G. 

A partially ordered Abelian group is an Abelian group G equipped with 
a translation-invariant partial order <--. For such a group G, the positive cone 
determined by <- is denoted by G ÷. The standard positive cone in the additive 
group R of real numbers is the set R ÷ of  all real numbers that are nonnegative 
in the usual sense. For the remainder o f  this section, let G be a partially 
ordered Abelian group. 
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If  H is a subgroup  of  G, then H is a partially ordered Abelian group in 
its own right under  the restriction to H of  the partial order  -< on G. We refer 
to this as the induced partial order on H and to the corresponding posit ive 
cone H ÷ = H n G ÷ as the induced positive cone. For instance, the integers 
Z form a subgroup  of  R and the standard positive cone in Z is the induced 
posit ive cone Z ÷ = Z N R ÷. 

A subgroup  H of  G is said to be directed (with respect  to the induced 
partial order)  iff for  all a,  b E H, 3c  E H such that a,  b <-- c. 

Lemma I. 1. Let H be a subgroup of  G and let H ÷ = H n G ÷. Then the 
fol lowing condit ions are mutual ly  equivalent:  (i) H is directed; (ii) H = H ÷ 
- H+; (iii) H = (H÷); (iv) 3 M  C_ G + with H = (M). 

Proof (i) ~ (ii): As sume  (i) and let h ~ H. Then 3x ~ H with 0, h --< 
x ; h e n c e ,  x ~ H A  G ÷ = H + , y : = x -  h ~ H A  G + = H + , a n d h  = x -  
y. Obviously ,  (ii) ~ (iii) ~ (iv). 

(iv) :=~ (i): Assume  (iv) and let a,  b ~ H. Then 3x, y, z, w ~ M n H + 
such t h a t a  = x - y - - - - - x  ~ H a n d b  = z -  w-----z ~ H, and it fol lows that 
a , b < _ c : = x + z  E H. • 

Corollary 1.2. G = (G +) iff G is directed. 

A subgroup  H of  G is called order-convex iff, for all a,  b ~ G, 0 -< a 
-< b E H ~ a ~ H. In the theory of  partially ordered Abelian groups,  an 
order -convex  directed subgroup H of  G is referred to as an ideal; however ,  
we avoid using this te rminology because  of  possible  confusion with the 
notion of  an ideal in an effect  algebra.  (See Sect ion 7 below.) If  H ÷ = H n 
G + = {0}, then H is said to be trivially order-convex. 

Theorem 1.3. Let H be a subgroup of  G. Then the fol lowing condit ions 
are mutual ly  equivalent:  

(i) H is order-convex.  
(ii) a,  c ~ . H , b  ~ G , a ~ b < - c ~ b  ~ H. 
(iii) If  Q is an Abel ian group and a'l: G ---) Q is a group h o m o m o r p h i s m  

with ker('q) = H, then "q(G +) is a cone in Q. 
(iv) There  is a partially ordered Abel ian  group Q and a group h o m o m o r -  

phism rl: G ~ Q such that "q(G ÷) C Q÷ and H = ker(vl). 

Proof (i) ~ (ii): Assume  (i) and the hypotheses  o f  (ii). Then 0 --< b - 
a -< c - a ~ H, so b - a ~ H, and it fol lows that b ~ H. Obviously,  (ii) 

(i), so (i) ¢~ (ii). 
(i) ~ (iii): Assume  (i) and the hypotheses  o f  (iii). Obviously,  "q(G ÷) + 

vI(G ÷) C rI(G +) and 0 ~ "rl(G+). Suppose  q, - q  ~ rl(G+). Then 3a,  b E G ÷, 
q = r l ( a ) , - q  = ' r l ( b ) . T h e n 0 - < a - < a  + b a n d ' q ( a  + b) = q -  q = 0, 



1120 Foulis, Bennett, and Greechie 

so a + b e ker(T I) = H, and it fol lows that a • H = ker(vl), so 
q = ~ ( a )  = 0 .  

(iii) =:~ (iv): Assume  (iii), let Q = G/H, and let "q: G ~ Q be the natural 
group ep imorphism.  By (iii), Q can be organized into a part ial ly ordered 
Abelian group with posit ive cone Q+ :=  "q(G+). 

(iv) =:~ (i): Assume  (iv) and let a, b • G, 0 <- a -< b • H. Then a c 
G +, s o ' q ( a )  • G +. Also, b - a • G + and b • H = ker(~q), so - x l ( a )  = "q(b 
- a)  • G +, and it fol lows that Tl(a ) = 0, so a e ker('q) = H. • 

Let  H be an order -convex  subgroup  o f  G and let "q: G --~ G/H be the 
natural homomorph i sm .  Then,  by  Part (ii) o f  T h e o r e m  1.3, G/H can be 
organized into a partially ordered Abelian group with posi t ive cone (G/H) + 
• = "q(G+). Unless one makes  an explicit  st ipulation to the contrary, it is 
a lways  understood that GIH is partially ordered in this way. Obviously ,  if G 
is directed, so is G/H. 

Definition 1.4. If  M is a subset  o f  G, we define ocs(M) to be the 
intersection o f  all o rder -convex  subgroups  of  G that contain M. We also 
def ine ssg(M) to be the subsemigroup  o f  G consist ing o f  0 and all sums  of  
finite sequences  of  e lements  in M. 

The  intersection of  order -convex  subgroups  o f  G is again an order-  
convex  subgroup of  G, so ocs(M) is the smallest  o rder -convex  subgroup  o f  
G that contains M. 

Lemma 1.5. Let M (2 G +. Then: 
(i) ocs(M) = ocs(ssg(M))  = {h ~ GI3y  • ssg(M), - y  -< h ----- y}. 
(ii) ocs(M) is a directed order -convex  subgroup of  G. 

Proof  (i) Obvious ly  ssg(M) (2 G + and ocs(M) = ocs(ssg(M)).  Let  H "= 
{h • G t 3 y  E ssg(M), - y  <-- h --< y} and let h, k • H. Then  3y, z • ssg(M) 
with - y  --< h --< y and - z  --< k -< z. Thus,  - z < -  - k - < z ,  a n d w : = y  + z 
• ssg(M) with - w  -< h - k -< w, and it fol lows that H is a subgroup  o f  G 
with M (2 ssg(M) (2 H. Suppose  g E G and 0 -< g -< h • H. Then qy • 
ssg(M) (2 G ÷ with - y  --< h ----- y, so - y  -< 0 -< g -< y, and it fol lows that g 
e H. Therefore ,  H is an order -convex  subgroup of  G. That  any order -convex  
subgroup of  G that contains ssg(M) must  contain H is clear. 

(ii) Let  h, k ~ ocs(M). By Part (i), 3y, z • ssg(M) C G ÷ with - y  -< h 
-< y and - z  -< k -< z, and it fol lows that h, k -< y + z • ocs(M).  • 

The  partially ordered Abel ian  group G is said to be lattice-ordered iff 
the partially ordered set (G, --<) is a lattice. I f  G is lat t ice-ordered and H is 
an order -convex  directed subgroup  of  G, then, as a partially ordered set, H 
is clearly a sublattice o f  G, so H is lat t ice-ordered.  I f  G is la t t ice-ordered 
and x~, x2, y~, Y2 • G with xi <- yj for all i, j ,  then any e lement  z e G with 
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xz v x2 --< Z --< yj A Y2 satisfies the condit ions xi --< z --< -vi for  all i, j .  Thus,  
if G is lat t ice-ordered,  it satisfies the condit ion in the fol lowing definition. 

Defini t ion  1.6. G is an in terpolat ion group  (Goodearl ,  1986) iff xj, x2, 
Yt, Y2 e G w i t h x g - < y j f o r a l l i ,  j ~ 3 z  e G, xi <- z <- yj for all i, j .  

If  G is an interpolation group and H is an order -convex  directed subgroup 
of  G, then both H and G / H  are interpolation groups  (Goodear l ,  1986, Proposi-  
tion 2.3). 

Defini t ion  1.7. Let T C_ G +. 
(i) G+[0, 7] :=  {p E G+13t e T, p <- t}. 
(ii) T is genera t i ve  iff G ÷ = ssg(G+[0, 7]) and G = (G+). 

Note that we speak of  a generat ive set in G only when G is directed. 
Thus,  T is genera t ive  iff  G+[0, T] generates  G + as a semigroup,  and G +, in 
turn, generates  G as a group. 

L e m m a  1.8. Let T C_ G+ and consider  the fol lowing conditions: 
(i) T is generat ive.  
(ii) g e G ~ 3c e ssg(T), g <- c. 
(iii) ocs(T) -- G. 
(iv) G is directed. 
Then (i) ~ (ii) ¢=~ (iii) ~ (iv). If  G is an interpolation group, then (i) 

¢=> (ii) ¢=~ (iii). 

P r o o f  To prove  (i) ~ (ii), assume (i) and suppose  g e G. Since G is 
directed, 3a,  b e G + with g = a - b and, since T is generat ive,  there are 
finite sequences  Pi,  P2, P3 . . . . .  p ,  in G + and tt, t2, t3 . . . . .  6, in T with p~ --< 
t; for i = l, 2, 3 . . . . .  n and a = "£,iPi. Let  c : =  Ei ti. Then,  a = Zi  Pi <- 
~,i ti = c <- b + c, whence  g = a - b <- c e ssg(T). That  (iii) ~ (ii) fol lows 
directly f rom Part (i) o f  L e m m a  1.5. To prove  (ii) ~ (iii), assume (ii) and 
let g ~ G. Choose  c, d e ssg(T) with g --< c and - g  --< d and let y = c + 
d e ssg(T) C_ G ÷. Then  - y  -< g <- y, and it fol lows that g e ocs(T). That  
(iii) ~ (iv) fol lows f rom Part (ii) o f  L e m m a  1.5. 

Finally, suppose  G is an interpolation group and that it satisfies Condi t ion 
(ii). Since (ii) ~ (iii) ~ (iv), we have only to prove  that T is generat ive.  
Thus,  suppose g e G +. By (ii), qq ,  t2, t3 . . . . .  t,, e T such that g <- ~,i ti. 
By Proposi t ion 2.2 in Goodear l  (1986), 3p~, p2, P3 . . . . .  p,, e G + such that 
g = E~Pi  and pg - ti for i = l, 2, 3 . . . . .  n; and it fol lows that g e 

ssg(G+[0, 7]). • 

An e lement  u e G ÷ is said to be genera t i ve  iff {u} is a generat ive set 
(Bennett  and Foulis,  n.d.), and it is called an order-uni t  (Goodearl  et  al., 
1980) iff, for  every  g e G, 3n e Z +, g <-- nu. By Part (ii) o f  L e m m a  1.8, a 
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generative element is automatically an order-unit. However,  unless G is an 
interpolation group, not every order-unit need be generative. For instance, if 
G = Z as an Abelian group with the nonstandard cone G ÷ := Z+\ { 1 }, then 
G is directed and 2 is an order-unit in G, but it is not generative. 

Lemma 1.9. Let T C G ÷ be generative and let H be an order-convex 
directed subgroup of G. Then H = (H n G+[0, T]). 

Proof  By Lemma 1.1, H = (H n G+), so it will be sufficient to prove 
that H N G* C (H n G+[0, T]). Let h E H n G +. Since T is generative, 
there are finite sequences th, h2 . . . . .  h,, ~ G + and tj, t2 . . . . .  t,, E T with 
hi <- ti for i = 1, 2, 3 . . . . .  n and t7 = Y.i hi. For e a c h j  = 1, 2 . . . . .  n, we 
have 0 <- hj <- ]~i hi = h ~ H and, owing to the order-convexity of  H, we 
h a v e h  i E H A  G ÷. • 

If X is a nonempty set, then Z x := {f  t f :  X ~ Z} is a lattice-ordered 
Abelian group under pointwise addition and with the standard positive cone 
(Z÷) x. I f f  E Z x, the support  o f f  is the set supp(f)  :=  {x ~ XI f ( x )  --/: 0}. 
The subgroup of Z x consisting of all functions with finite support is denoted 
by Z [xl and the induced positive cone in Z Ixq is (Z+) lxl. Evidently, Z lxl is 
an order-convex directed subgroup of  Z x and therefore is lattice-ordered. 
For the remainder of  this paper, we always understand that Z x and Z [xl are 
thus organized into lattice-ordered groups. 

The partially ordered Abelian group G is called a simplicial group 
(Goodearl, 1986, p. 47) iff it is isomorphic (as a partially ordered group) to 
Z x for some finite set X. A partially ordered Abelian group G is simplicial 
iff it is an interpolation group with an order unit and (as a partially ordered set) 
G ÷ satisfies the descending chain condition (Goodearl, 1986, Corollary 3.14). 

Theorem 1.10. Let X be a set. Then: 
(i) If  Y C X and H = {f  ~ Z t'vllf(y) = 0 for all y E Y}, then H is a 

directed order convex subgroup of  Z Ix3. 
(ii) If  X is a finite set and H is a subgroup of Z x, then H is directed 

and order convex iff it has the form in Part (i) for some subset Y of X. 

Proof  Part (i) is obvious. (ii) By Goodearl (1986), Proposition 3.8, if 
X is finite, then H is directed and order-convex iff there is a subset W of X 
such that H is generated by all characteristic set functions Xlwj with w ~ W. 
L e t Y = X \ W .  • 

A subset T of G is called an antichain iff no two distinct elements of  
T are comparable with respect to the partial order --<. Thus, T C G is an 
antichain iff s, t ~ T w i t h  s <- t ~ s = t. 

Lemma 1.11. If G is a simplicial group, then every antichain in G ÷ is finite. 
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Proof  See Perles (1963). • 

2. T E S T  G R O U P S  

The idea of a test group, which we now introduce, unifies a number of 
different concepts which have been studied in connection with effect algebras 
and difference posets. This part of our work is related to, and partially 
motivated by, the D-test spaces of Dvure~enskij and Pulmannovfi (1994b). 

Definition 2.1. A test group is a pair (G, 7) consisting of a partially 
ordered Abelian group G with positive cone G + and a nonempty generative 
antichain T C G +. Elements t ~ T are called tests and elements in G+[0, T] 
are called T-events, or simply events if T is understood. 

The following example shows how test groups generalize interval effect 
algebras (Bennett and Foulis, n.d.). 

Example 2.2. G+[0, u] is an interval effect algebra with ambient group 
G and unit u iff (G, {u}) is a test group. 

The next example and definition are basic, as they show how lattice- 
ordered test groups typically arise from effect algebras. For the definition 
and elementary facts about effect algebras see Foulis and Bennett (1994). If 
E is an effect algebra, a subset X of E\{0} is called a set of generators for 
E iff every a E E can be written as a finite orthocombination a = G ~ x  
f (x)x,  where f E (Z+) lxl. 

Example 2.3. Let E be an effect algebra with unit u, let X C_ E\{0} be 
a set of generators for E and let 

T = {t ~ (Z+)lXllu = G~xt(X)X} 

Then (Z txl, T) is a test group and the T-events are the functions f ~ (Z+) txl 
for which G ~ x  f (x )x  is defined in E. If X is finite, then Z Ix1 = Z x is a 
simplicial group and, by Lemma 1.11, T is necessarily finite, hence E itself 
is finite. 

If the effect algebra E is finite, or more generally, satisfies the descending 
chain condition, then one can choose the set X of  atoms in E as a set of  
generators. If no obvious set of generators presents itself, one can always 
choose X = E \  {0}. 

Definition 2.4. If X is a set and Z txl is partially ordered by the standard 
positive cone (Z+) 1~, a test group of  the form (Z lxl, T) is called a multiplici~." 
group provided that, for every x E X, 3t E 7", t(x) ~ O. If E is an effect 
algebra with unit u and X C E\{0} is a set of generators for E, a function 
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t ~ Z txl is called a multiplici~function for E with respect to X iff u = O.,~x 
t(x)x. If T is the set of all multiplicity functions for E with respect to X, the 
test group (Z txl, T) is called the multiplici~, group for E with respect to X. 

The following example shows how test spaces (Foulis et al., 1993) give 
rise to lattice-ordered test groups. 

Example 2.5. Let (X, #)  be a test space and, for each test E ~ ~, let 
×E be the characteristic set function of  E. Let T := {×EIE e ,~} and let G 
be the order-convex subgroup of Z x generated by T Then (G, T) is a test 
group for which the T-events are the characteristic set functions of the events 
for (X, ~). 

By analogy with Example 2.5, the D-test spaces of DvureEenskij and 
Pulmannov~i (1994a,b) also give rise to lattice-ordered test groups. 

Example 2.6. Let (X, ~) be a D-test space and, for each E e ~ and all 
x ~ X, let tE(x) be the (finite) cardinal number of the set E-~(x). Let T := 
{tEIE e ~} C Z x, and let G := ocs(T). Then (G, T) is a test group and the 
T-events may be identified with the events for (X, 5~). 

For the remainder of  this paper, we assume that (G, T) is a test group 
with G+[0, T] as its set of  T-events. The proof of the following lemma 
is straightforward. 

Lemma 2.7. If a e G ÷, then the following conditions are mutually 
equivalent: 

(i) a e G+[0, T]. 
(ii) 3b  e G + ,a  + b e T. 
(iii) 9b e G+[0, T], a < b. 

Definition 2.8. Let a, b, c • G+[0, T]. 
(i) a is orthogonal to c, in symbols, a 2. c, iff a + c e G+[0, 7]. 
(ii) a and c are supplements iff a + c e T. 
(iii) a and b are perspective, in symbols a ~ b, iff a and b share a 

common supplement c. Such a common supplement c is called an axis for 
the perspectivity a -- b. 

As we now show, most of  the facts established in Foulis et al. (1993) 
for perspectivity in a test space can be generalized to test groups. For a 
related study of  perspectivity in partial Abelian semigroups, see Pulmannovd 
and Wilce (1994) and Wilce (1995). 

Lemma 2.9. Let a, b, c e G+[0, 7] and let t, u e T. Then: 
(i) t - u with axis 0. 
(ii) a_L c a n d c ~  (a + c )= :~a  = 0. 
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(iii) a - - 0 ~ a  = 0. 
(iv) a < - b a n d b _ L  c ~ a _ L  c. 
(v) a - - t c : ~ a  e T. 

Proof. Part  (i) is obvious .  To prove  Part  (ii), a s sume  the hypotheses  and 
let d be an axis for c - -  (a  + c) .Then,  c +  d , a  + c +  d e T w i t h c  + d 
- < a  + c + d, and it fo l lows  that c + d =  a + c + d, w h e n c e a  = 0. Part  
(iii) fo l lows from Part (ii) with c = 0. F rom the hypotheses  o f  Part  (iv) we 
have  0 -< a + c -< b + c E G+[0, T], so a + c • G+[0, T] and therefore  a 
_L c. In Part (v), the impl ica t ion  ~ fo l lows  f rom Part  (i). To prove  the 
converse  impl ica t ion  in Part (v), note that i f  d is an axis  for a - -  t, then t, t 
+ d •  T w i t h t  < t + d , w h e n c e t = t + d , s o d = 0 a n d a = a + d e  T. • 

Lemma 2.10 (Perspec t iv i ty  Cance l la t ion  Law).  Let  a, b, c • G÷[0, T] 

w i t h a _ L  c a n d b _ L  c. T h e n a  + c - - b  + c ~ a - - b .  

Proof. By hypothes i s ,  q d  • G+[0, T] such that a + c + d and b + c 
+ d • T. Thus a is pe rspec t ive  to b with axis  c + d. • 

Lemma 2.11 (Addi t iv i ty  Lemma) .  Suppose  that ~ is a t ransi t ive relat ion 
and l e t a ,  b , c  • G+[0, T ] w i t h a . L  b a n d a _ L  c. T h e n b ~ c ~ a  + b 

a + c .  

Proof Let d be an axis for  b - -  c and choose  p,  q • G÷[0, T] such that 
a + b + p , a  + c + q • T. T h e n a  + p - d w i t h a x i s b a n d d - a  + q 

with axis c. S ince  - is t ransi t ive,  a + p - a + q; hence,  p ~ q by L e m m a  
2.10. Let  r be an axis  f o r p  - -  q, so that a + b ~ r with axis  p.  Fur thermore ,  
r - -  a + c with axis  q; hence,  a + b ~ a + c by the t ransi t iv i ty  o f  ~ .  • 

We now in t roduce  a ref lexive  and t ransi t ive relat ion ~< on G+[0, T] that 

ex tends  both --< and ~ .  

Definition 2.12. If  a ,  b • G÷[0, T], def ine  a ~< b iff  there is a finite 
sequence  Co, q ,  c~ . . . . .  c ,  in G+[0, 7] such that a = co, b = c, ,  and,  for 
each i = 1, 2, 3 . . . . .  n, one o f  the condi t ions  ci-I <-- ci or  ci-l ~ ci holds.  

Lemma 2.13. If  a • G÷[0, T] and t • T, then (i) 0 ~< a ~< t, (ii) a ~< 0 

a = 0, a n d ( i i i )  t ~ < a ~ a  • T. 

Proof. L e m m a  2.9 and induct ion.  • 

Lemma 2.14. If  a, b, a ' ,  b '  • G÷[0, T], a + a '  • T, b + b '  • T, and 

a ~< b, then b '  ~< a ' .  

Proof. A s s u m e  the hypotheses .  By induct ion,  it wil l  be enough to prove 
that b '  <~ a '  for  the two specia l  cases  a --< b and a ~ b. I f  a --< b, let c = 
b - a and observe  that b '  - (b '  + c) ~ a '  with axis  a,  so b '  ~ a ' .  I f  a 
bwi thax i sd ,  t h e n b ' ~ d w i t h a x i s b ,  d ~ a '  wi thaxisa,  andagainb'  <-a '. • 
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3. A L G E B R A I C  S E T S  O F  T E S T S  

The  notion o f  an algebraic test group as given in the fol lowing definition 
generalizes the idea of  an algebraic test space (Foulis et al., 1993). 

Definition 3.1. We say that the test g roup (G, 7-) is algebraic iff perspec- 
tivity preserves orthogonali ty;  that is, for all a, b, c e G+[0, 7], 

a - b a n d b  ± c ~ a  I c 

We also express the idea that (G, T) is algebraic by saying that T is 
algebraic in G or, if G is understood, s imply that T is algebraic. 

Theorem 3.2. The fol lowing condit ions are mutually equivalent:  
(i) T is algebraic. 
(ii) I f  a, b, c e G+[0, T], a ~< b, and b ± c, then a I c. 
(iii) I f  a, b, c e G+[0, 7], a - b, and c is a supplement  o f  a, then c is 

a supplement  o f  b. 

Proof. That (i) ==~ (ii) fol lows immediately  from Definition 3. l, Part (iv) 
o f  L e m m a  2.9, and induction. That  (ii) ~ (i) is obvious.  To prove (i) 
(iii), assume (i) and the hypothesis  o f  (iii) and let d be an axis for a --  b. 
Then d -- c with axis a. Since b --  a and a I c, it follows from (i) that b 
I c. Let p be a supplement o f  b + c, so that (c + p)  --  d with axis b. 
Therefore,  since a I d, it follows from (i) that a ± (c + p); hence, 3 t  e T 
w i t h a  + c + p  <- t. But then, a + c e T w i t h a  + c--< t, and it follows 
that a + c = t, so p = 0 and c is a supplement  o f  b. To prove (iii) ~ (i), 
assume (iii) and suppose that a - b, and b ± c. Let q be a supplement  o f  
b + c. Then c + q is a supplement  o f  b, so c + q is a supplement  o f  a, and 
it fol lows that c 3- a. • 

Corollary 3.3. Let T be algebraic and let a, b e G+[0, T]. Then: 
(i) a ~ b ¢ ~ 3 c  • G+[0, T] w i t h a  ~ c a n d c - -  b. 
(ii) - -  is an equivalence relation on G+[0, T]. 
(iii) a ~< b a n d b  ~< a c ~ a  ~ b. 

Proof The implication ~ in Part (i) is obvious. To prove the converse  
implication, suppose a ~ b and let d be a supplement  o f  b. Then a ± d by 
Part (ii) o f  Theorem 3.2. Let p be a supplement  o f  a + d and let c = a + 
p, so that c + d • T. Then a --< c and c --  b with axis d. To prove Part (ii), 
it suffices to show that --  is transitive. Thus,  suppose a, b, d e S with a 
b and b - d, and let c be an axis for b ~ d. Then c is a supplement  o f  b, 
and it follows from Part (iii) o f  Theorem 3.2 that c is a supplement  o f  a; 
hence, a --  d with axis c. In Part (iii), the implication ~ is obvious.  To 
prove the converse,  assume that a ~< b and b ~< a. By Part (i), 3al ,  bt with 
a 3_ at, b 3_ bl, (a + al) --  b, and (b + bl) --  a. Since b 3_ bl and T is 
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algebraic, we have (a + a~) 3- bl. Thus, by Part (ii) and Lemma 2.11, 
(a + al) + b~ - b + bi - a, and therefore al + bl = 0 by Part (ii) of 
Lemma 2.9. Consequently, at = bl = 0, so a - b. m 

Theorem 3.4. (Additivity Theorem). Suppose T is algebraic and let at, 
a2, bl, b2 ~ G+[0, T] with al ~ a2, bl - b2, and at ± bt. Then a~ 3_ b2 and 
al + b~ - a2 + b2. 

Proof That a~ _L b2 follows from two applications of the condition in 
Definition 3.1. By Part (ii) of Corollary 3.3, ~ is transitive. Thus, using 
Lemma 2.11 twice, we have a~ + b~ - a~ + b2 -- a2 + b2. • 

If T is algebraic, the perspectivity equivalence classes in G+[0, T] can 
be organized into an effect algebra as follows. 

Definition 3.5. Suppose T is algebraic. For each a ~ G+[0, T], define 
7r(a) := {b E G+[0, T]la -- b} and define [I(G, 73 := {'rr(a) la ~ G+[0, 
T] }. If 'rr(a), "rr(b) ~ I-I(G, 73, define "rr(a) • -rr(b) iff a 3_ b, in which case 
"n'(a) • "rr(b) := "rr(a + b). By Theorem 3.4, G is well defined. 

The following theorem is an immediate consequence of the preceding 
results. 

Theorem 3.6. If T is algebraic, then I-I(G, 73 is an effect algebra with 
zero element 7r(0) and with unit u := 'rr(t), where t is any element of T. 
Furthermore, for a, b ~ G+[0, T], a ~< b ¢:> 'rr(a) -< "rr(b) in I~(G, T). 

In Example 2.2, {u} is algebraic and I-I(G, {u}) can be identified with 
the interval effect algebra G+[0, u]. A multiplicity group (Z lxl, 73 for an effect 
algebra E is automatically algebraic and I-I(Z Ixq, 73 is isomorphic to E under 
the well-defined mapping "rr(f) ,--, Ox~X f(x)x. Consequently, every effect 
algebra can be represented as 1-I(G, 73 for an algebraic lattice-ordered test 
group. In Examples 2.5 and 2.6, T is algebraic iff (X, 3 ~) is algebraic in the 
sense of Foulis et al. (1993) and Dvure?zenskij and Pulmannovfi (1994b), 
respectively. 

4. THE A L G E B R A I C  CLOSURE OF T 

If a set of tests T fails to be algebraic, it is because there are T-events 
a, b, c, d such that a + c, c + b, and b + d belong to T, but a + d does 
not. In other words, T fails to be algebraic just because it fails to be "large 
enough." This suggests that it might be possible to enlarge a nonalgebraic T 
to an algebraic set of tests. Of course, enlarging T means enlarging the set 
of T-events, and repeated enlargements might be necessary before one arrives 
(if at all) at an algebraic set of tests. 
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Note that, if T C S C G ÷, then S is automatically generative; hence, 
(G, S) is a test group iff S is an antichain. 

Definition 4.1. The test group (G, T) is said to be prealgebraic iff there 
is an antichain S C G + such that T _C S and (G, S) is an algebraic test group. 

We also express the idea that (G, T) is prealgebraic by saying that T is 
prealgebraic in G or, if G is understood, simply that T is prealgebraic. 

If  T C St C G ÷ and St is an algebraic antichain for all u, it is clear that 
T C fqLS~ and fq~S~ is an algebraic antichain in G ÷. Thus, we have the 
following definition and theorem. 

Definition 4.2. If  T is prealgebraic in G, then T--, called the algebraic 
closure of  T in G, is the set-theoretic intersection of all algebraic antichains 
S C G + such that T _ S. We also refer to (G, T- )  as the algebraic closure 
of (G, T). 

If  G is understood and T is prealgebraic, we may refer to T" simply as the 
algebraic closure of  T. Definition 4.2 has the following obvious consequence. 

Theorem 4.3. If  T is prealgebraic, then T-- is algebraic and if S is an 
algebraic antichain with T C S C G +, then T -  C S. 

We now proceed to show that, if T is prealgebraic and G is an interpola- 
tion group, then it is possible to form the algebraic closure T" inductively 
by successively adjoining elements to T. 

Definition 4.4. If S _C G ÷, we now define the derived set ~ (S )  by ~(S)  
• = {t + v - sis,  t, v E S, s <- t + v} and, by induction, °~°(S) = S and 
~"+I(S) = ~ (~" (S ) )  for n = 1, 2, 3 . . . . .  

Note that S C ~"(S)  C ~"+~(S) for all S C G + and all n = 0, 1, 2 . . . . .  

Theorem 4.5. If  ~ (T)  C_ T, then T is algebraic. Conversely, if T is 
algebraic and G is an interpolation group, then ~ ( T )  = T. 

Proof Suppose ~ (T)  C_ T and let a, b, c e G÷[0, T] with a --  b and b 
+ c E T. By Theorem 3.2, it will be sufficient to prove that a + c e T. Let 
d b e a n a x i s  f o r a -  b a n d p u t t  = a + d , s  = d + b, v = b + c, noting 
tha ts ,  t , v  e T a n d s  = d +  b-----(a + d)  + (b + c) = t + v, w h e n c e a  + 
c = (a + d)  + (b + c ) -  (d + b) = t + v -  s e ~(T)_C T. 

Conversely, suppose T is algebraic and G is an interpolation group. 
Since T C ~(T) ,  we have to prove ~ (T)  C T. Let s, t, v e T with s --< t + 
v, noting that 0, s - v --< s, t. Hence, 3d  e G with 0, s - v -< d <-- s, t. 
Because 0 <- d -< t, w e h a v e d  e G+[0, T ] . L e t a  = t - d , b  = s -  d, and 
c = v + d -  s. Then 0 --< a -< r a n d 0 - <  b - < s ,  s o a ,  b e G+[0, T] .Also  
a + d = t e T a n d b  + d = s e T, s o a - -  b w i t h  ax i sd .  Furthermore, 
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s -  v <-- d implies that 0 <-- v + d - s  = c a n d ,  s i n c e b +  c = ( s - d )  + 
(v + d - s) = v c T, it follows that c is a supplement of b. Consequently, 
the fact that T is algebraic implies that 

t + v - s = ( t - d ) + ( v + d - s ) = a + c E T  • 

Theorem 4.6. If ~)"(T) is an antichain for all n = 0, 1, 2 . . . . .  then T 
is prealgebraic and 7"- C U,, ~"(T). Conversely, if G is an interpolation 
group and T is prealgebraic, then ~"(T)  is an antichain for all n = 0, 1, 2, 
. . . .  and T = tO,, ~"(7) .  

Proof Let S = tO,, ~"(T),  noting that T C_ S and ~b(S) = S. Suppose 
that ~n(T) is an antichain for all n. Then, owing to the fact that T C_ ~"(7)  
C_ ~b"+t(7) for all n, S is an antichain that contains T and S is algebraic by 
Theorem 4.5; hence T is prealgebraic. 

Conversely, suppose G is an interpolation group and T is prealgebraic. 
Then 7"  is algebraic, T C T-,  and T" = ~3(T") by Theorem 4.5. Therefore, 
%"(7) C ~b"(T-) = 7 "  for all n = 1,2, 3 . . . .  ; hence, since T" is an antichain, 
so is ~"(7).  Furthermore, S ___ 7"- and, since %(S) = S, it follows from 
Theorem 4.5 that S is algebraic, so 7"- C S, and therefore 7"  = S. • 

Theorem 4.Z Suppose (Q, U) is an algebraic test group and that +: G 
--~ Q is a group homomorphism such that ~(G +) C_ Q+, ~(T) C_ U, and ker(~) 
I'1 G + = {0}. Then (G, 7) is prealgebraic and +(T")  C_ U. 

Proof Let S := {s E G+l+(s) E U}. Suppose p, q e S with p --< q. 
Since q,(G +) C_ Q+, we have qJ(p) -< +(q); hence, since ~(p), dj(q) E U, we 
have +(p) = +(q). Therefore, q - p e ker(~) fq G + = {0}, so p = q, 
proving that S is an antichain in G +. Since T C_ S, it follows that T is 
prealgebraic and T-  C_ S. Therefore, ~ (T- )  C ~(S) C_ U. • 

5. THE UNIVERSAL GROUP 

Given an effect algebra E and a set of  generators X C_ E\ {0}, one can 
form the corresponding algebraic multiplicity group (Z lxq, T) as in Definition 
2.4, thus realizing E, up to isomorphism, as I I (Z lxl, T). Conversely, one can 
start with a set X and an algebraic multiplicity group (Z Ex'l, 7) and form the 
corresponding effect algebra E := II(Z txl, 7), and this will be our point of 
view in the present section. As a matter of fact, this gives one of the most 
effective methods for specifying finite effect algebras. Thus, we fix the 
following notation for the remainder of this section. 

Notation 5.1. X is a set, G : = Z Ixq with the standard positive cone (Z+) {xl, 
T is an algebraic antichain in G, and E := I-I(G, 7) is the corresponding 
effect algebra. The perspectivity class corresponding t o f  ~ G+[0, T] is 7r(f) 
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e E, the unit in E is given by u :=  'rr(t) for  all t • T, and the zero in E is 
given by 0 -- "rr(0). I f  x • X, then X, :=  Xl.,-} denotes  the characterist ic set 
function of  the set {x}. Assuming  that X.~ • G+[0, T], we define % :=  'rr(x0 
for all x • X. Also,  we choose and fix a mult ipl ici ty function s • T, def ine 
T -  s :=  {t - s i t  • T}, and recall that ( T -  s) is the subgroup  o f  G 
generated by T - s. Finally, we assume that ~J is an Abel ian group and ti: 
G --+ ~ is a group ep imorph i sm with ker(~) = (T - s). 

Evidently,  x • X implies that % 4 : 0  and {'rr.~Ix e X} is a set o f  
generators  for  the effect  a lgebra E = H(G,  7). Also, if t, s '  • T, then t - s 
= (t - s ' )  - (s - s ' ) ,  so the subgroup  (T - s) o f  G and the quotient  group 
G/(T - s) are independent  o f  the choice  of  s. If  desired, one can take the 
group ~ to be the quotient  group G/(T - s) and ~ to be the natural ep imorph i sm 
[: G --+ G/(T  - s). In any case,  ~5 is i somorphic  to G/(T - s). 

Lemma 5.2. Let f,  g • G+[0, T]. Then: 
( i ) f ~  g ¢:a "rr(f) = "rr(g). 
(ii) "rr(f) = u ¢=~ f • T. 
(iii) "rr(f) = 0 ¢:~ f = O. 
( i v ) f  J_ g c a  "rr(f) J_ 7r(g). 
( v ) f _ L  g =:> 'n '(f  + g) = "rr(f) ~ 7r(g). 
(vi) 'rr(f) = @x~xf(x)'rrx. 
(vii) "rr(f) = "rr(g) ~ {( f )  = {(g).  

Proof  Parts ( i ) - (v )  are obvious.  Since f = Y-,x~x f(x)×x and there are 
only finitely many  nonzero terms in the sum, Part (vi) fol lows f rom Part (v) 
and induction. To prove  (vii), suppose  "rr(f) = 'rr(g) so t h a t f -  g and 3h • 
G+[0, T] such that f + h, g + h • 7". Then,  

f - g  = [ ( f +  h ) -  s] - [ (g  + h ) -  s] • ( T -  s) = ker({) 

so { ( f ) =  {(g).  • 

I f  A is an Abel ian group, a mapp ing  4:  E --~ A is called an A-valued  
measure on E iff, for  p, q • E with p ± q, ~b(p • q) = ~ ( p )  + ~b(q). 

Theorem 5.3. There  is a unique mapp ing  y:  E ~ ~5 such that: 
(i) f • G+[0, T] ==> "v('rr(f)) = { ( f ) .  
Furthermore:  
(ii) y: E ---> ~ is a % v a l u e d  measure .  
(iii) t • T = ,  {(t) = "/(u). 
( i v ) f  • G ==> {( f )  = ~,~x f (x )y (Tr , ) .  
(v) ~(G+[O, T]) = y(E).  
(vi) {(G +) = ssg(~(E)).  
(vii) (y(E)} = ({-V(%.)lx • X}) = ~ .  
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Proof F o r p  ~ E, define ~/(p) := ~(f), w h e r e f i s  any element in G+[0, 
7] such that -rr(f) = p. By Part (vii) of Lemma 5.2, ",/: E --~ ~J is well defined. 
Obviously (i) holds and ~/is uniquely determined by (i). To prove (ii), suppose 
p, q E E with p _L q and select f,  g E G+[0, T] with p = "rr(f) and q = 
-rr(g). Then, by Parts (iv) and (v) of Lemma 5 . 2 , f  + g E G+[0, 7] and p • 
q = r r ( f  + g), whence, 

~/(p ~) q) = ~(f  + g) = ~(f) + ~(g) = y(p)  + ~(q) 

Part (iii) follows immediately from Part (ii) of  Lemma 5.2. 
For x ~ X, X~ ~ G+[ 0, T], and it follows from (i) that ~/('rrx) = ~(X.,). 

But, f o r f  ~ G, f = ]~.,~xf(x)x.~, so ~(f) = Ex~xf(x)~(X.O = ]~xExf(x)'v('rr~), 
proving (iv). Part (v) follows immediately from (i) and the fact that rr(G+[0, 
7]) = E. Since T is generative in G, we have G ÷ = ssg(G+[0, 7]) so in view 
of (v), 

~(G ÷) = ~(ssg(G+[0, 7])) = ssg(~(G+[0, 7])) = ssg(~(E)) 

proving Part (vi). 
Since G = G + - G + and ~: G ---) ~ is surjective, Part (vi) implies that 

(',/(E)) = ~. Also, for p ~ E, 3 f  ~ G+[0, 7] with ~/(p) = ~(f) = ~x~x 
f(x)~t('trx), and it follows that (~/(E)) = ({~/('rr~) Ix ~ X}), completing the proof 
of Part (vii). I 

A universal group for an effect algebra F is a pair (oR, k) consisting of 
an Abelian group oR and a oR-valued measure k: F ~ oR such that (i) (k(F)) 
= ~ and (ii) for every Abelian group A and every A-valued measure qb: F 
---> A, there is a (necessarily unique) group homomorphism qb*: oR --> A such 
that qb = +* o k. By Foulis and Bennett (1994), every effect algebra has a 
universal group which is unique up to an isomorphism. Because of the 
uniqueness, we often speak of  the universal group for an effect algebra. 

Theorem 5.4. (~J, ~/) is the universal group for E. 

Proof By Part (vii) of Theorem 5.3, (~/(E)) = q3. Suppose that +: E --> 
A is an A-valued measure and define the group homomorphism (l)#: G ---) A 
by qb#(f) := ExExf(x)(l)(~r.O for a l l f  E G = Z Ix]. Then, for a l l f  ~ G+[O, 7], 
Part (vi) of Lemma 5.2 implies that 

+('n'(f)) = ~)(x~xf(X)a'r") = xEx~f(x)d~(~rO=d~#(f) 

In particular, if t ~ T, then (b#(t) = dO('tr(t)) = qb(u), whence (b#(t) = ~b#(s) 
= (b(u), so t - s ~ ker(qb°). Therefore, ker(~) = (T - s) C ker(+#), so there 
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is a group homomorph i sm do*: ~ ~ A such that dO* o t~ = dO#. Thus,  for  all 
f • G+[0, T], 

dO(-~-(f)) = dO"(f)  = d O * ( ~ ( J ) )  = dO*(3 ' ( - r r~f)) )  

by Part (i) o f  Theorem 5.3. Therefore ,  by the surjectivity of  'rr: G÷[0, 7] --~ 
E, we have dO = dO* o 3'. • 

The  mapping 3': E ---) ~ is called the universal (~.-valued) measure for 
E and the mapping 6: ziXl ' ~  ~3 is called the canonical epimorphism. 

An A-valued measure do: E ---) A is said to be positive iff, for all p • 
E, dO(p) = 0 ~ p  = 0. 

Lemma 5.5. The  fol lowing condit ions are mutually equivalent:  
(i) 3': E ~ N is positive. 
(ii) For every  0 4: p • E there exists an Abelian group A and an A- 

valued measure dO: E -+ A such that dO(p) 4: 0. 
(iii) ker(~) n G+[0, T] = {0}. 

Proof (i) = ,  (ii) is obvious.  Assume (ii) and suppose that p • E with 
3"(p) = 0. If p 4: 0, there is an A-valued measure dO: E ~ A with dO(p) 4: 
0. Since (q~, 3') is the universal group for  E, there is a group homomorph i sm 
dO*: ~ --~ a such that dO = dO* o 3'. Therefore ,  dO(p) = dO*(3'(p)) = dO*(0) = 
0, contradicting dO(p) 4: 0, and proving that (ii) = ,  (i). To prove (i) ~ (iii), 
assume (i) and suppose f • ker(l~) N G*[0, T]. Then 0 = t~(f) = 3'(-rr(f)), 
and the posit ivity o f  3" implies 'rr(f) = 0 so f = 0. Conversely,  assume (iii) 
and suppose p • E with 3'(p) = 0. S e l e c t f  • G÷[0, 7] with "rr(f) = p. Then  
0 = 3'('rr(f)) = ~(f) ,  s o f  • ker(~) n G+[0, T] = {0}, and it fol lows that p 
= 'rr(0) = 0. Thus,  (iii) =* (i). • 

We now consider  the problem of  partially ordering the universal group 
q3 in such a way that 3'(E) C_ q3 ÷, that is, ssg(3'(E)) _C q3 +. If we can do this 
at all, we might  as well take q3 + = ssg(3'(E)). 

Lemma 5.6. q3 can be organized into a partially ordered Abelian group 
with positive cone N+ = ssg(3'(E)) iff  (T  - s) = ker(~) is an order-convex 
subgroup o f  G. If q3 is partially ordered by the positive cone ~3 + = 
ssg(3'(E)), then: 

(i) ~: G ~ ~ is an order-preserving group epimorphism.  
(ii) 3'(E) C_ N+[0, 3'(u)]. 
(iii) N is directed, 3'(u) is a generat ive order-unit  in N, and ~3+[0, 3'(u)] 

is an interval effect  algebra. 
(iv) If  a • c~, then a • ~÷[0, 3'(u)] ¢:* 3t  • G ÷, ~(t) = 3'(u), and 3 f  • 

G ÷ with f --< t and a = t~(f). 
(v) 3' is positive ¢:0 3'('rrx) 4 : 0  for all x e X. 
(vi) 3' is positive ¢=> ker(~) n G + = {0}. 
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Proof By Part (vi) of  Theorem 5.3, ~(G ÷) = ssg('y(E)) and, by Theorem 
1.3, we can partially order  ~3 with ~*  = ~(G ÷) iff ker(~) is order  convex  in 
G. Assume that q3 is partially ordered by ~3 + = ssg(3'(E)) = ~(G+). Then  Part 
(i) is obvious.  To prove Part (ii), suppose p E E. Then 3 f  ~ G÷[0, T] with 
p = 7r(f) and 3t E T with 0 --< f--< t. Therefore  by Part (i), 0 --< ~(f)  -< ~(t), 
whence 0 -< ",/(-rr(f)) -< ~/(Tr(t)) by Part (i) of  Theorem 5.3, so 0 - ~/(p) -< 
~/(u), proving Part (ii). In Part (iii), the fact that cg is directed fol lows from 
the facts that G is directed, ~3 + = ~(G+), and ~(G) = ~3. The  fact that ~/(u) 
is generat ive follows from Part (ii) and the fact that ssg('y(E)) = ~(G +) = 
~3 ÷. Therefore ,  ~(u) is an order-unit  by L e m m a  1.8. 

In (iv), the implication ~ fol lows from the fact that ~ is order-preserving.  
To prove the converse,  suppose 0 --< a --< ",/(u). Then  3f, g ~ G ÷ such that a 
-- ~(f )  and ",/(u) - a = ~(g). Let  t :=  f + g, noting that ~(t) = ~/(u), t 
G ÷, and f - t. 

In (v), the implication ~ fol lows from the fact that ~rx 4 : 0  for all x 
X. To prove the converse,  suppose p ~ E with 3'(P) = 0 and s e l e c t f  ~ G÷[0, 
T] with p = at(f).  Then  0 = 3'(P) = ~(f)  = Ex~xf(X)~l(Trx). If ~,(Trx) 4= 0 
for all x E X, then 0 4: ~/(wx) E uS÷, and, since f(x) ~ Z ÷ for all x E X, it 
follows that f(x) = 0 for  all x ~ X, whence  p = "rr(0) = 0. 

In (vi), the implication ~ fol lows from L e m m a  5.5 and the fact that 
G÷[0, T ] C  G ÷. To prove the converse,  suppose 7 is positive and let g 
ker(~) f7 G ÷. Since G÷[0, 7] is generat ive and g ~ G +, 3ft, f2 . . . . .  f ,  E 
G+[0, T] with g = EiJ~. Eachf i  -< g, so the order-convexi ty  of  ker(~) implies 
that ~ ~ ker(~) for  i = I, 2 . . . . .  n. By L e m m a  5.5, ker(~) f3 G+[0, T] = 
{0}, so l -  = 0 for i = 1, 2 . . . . .  n, and it fol lows that g = 0. • 

Definition 5. 7. T is complete iff  for  all t E G +, ~(t) = h'(u) =~ t E T. 

Lemma 5.8. If~3 is partially ordered by the positive cone ~3 ÷ = ssg(',/(E)) 
= ~(G ÷) and T is complete ,  then ~(E) = ~3+[0, ~(u)]. 

Proof Suppose T is comple te  and let a ~ N+[0, ~/(u)]. By Part (iv) of  
L e m m a  5.6, 3t  ~ G ÷, {(t) = ~/(u) and 3 f  e G + with f--< t and a = ~(f).  
Since T is complete,  t e T; hence,  f e G÷[0, 7], so, by Part (i) of  Theorem 
5.3, a = ~(f)  = 3,('rr(f)) ~ ~/(E). • 

Lemma 5.9. If q3 is partially ordered by ~3 + = ssg(3,(E)) = ~(G+), then 
the fol lowing conditions are mutually equivalent: 

(i) ",/: E ~ ~3+[0, -¢(u)] is an effect  algebra isomorphism. 
(ii) E is an interval effect  algebra. 
(iii) For all p, q ~ E, ~ (p)  --< 3'(q) =:1' P -< q. 

Proof By Part (iii) o f  Lemma  5.6, ~3*[0, ",/(u)] is an interval effect  
algebra, so (i) ~ (ii) holds. To prove (ii) ~ (iii), suppose E is an interval 
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effect algebra. Then there is a directed, partially ordered Abelian group A, 
a generative order unit v E A, and an effect-algebra isomorphism ¢: E 
---> A+[0, v]. In particular, + is an A-valued measure, so there is a group 
homomorphism ~b*: ~J ---> A such that ¢ = ¢* o -y. Thus, 

qb*(q3 ÷) = ~b*(ssg(',/(E))) = ssg(¢*(',/(E))) = ssg(dp(E)) 

C ssg(A +) = A + 

so ~b* is order-preserving. If p, q ~ E with 3'(P) <- 3'(q), then qb*('y(p)) -< 
~b*(3'(q)), that is, ~b(p) -< qb(q), so p <- q, completing the proof of (ii) ~ (iii). 

If (iii) holds, then ~/(E) is a sub-effect algebra of the interval effect 
algebra ~+[0, "y(u)] and E is isomorphic to ~/(E) under the isomorphism "y. 
Therefore, by Corollary 2.6 in Bennett and Foulis (n.d.), E is an interval 
effect algebra, and we have (iii) ~ (ii). That (ii) ~ (i) follows from Theorem 
4.2 in Bennett and Foulis (n.d.- ). • 

Corollary 5.10. If E is an interval effect algebra, then T is complete. 

Proof Suppose E is an interval effect algebra and let t E G ÷ with ~(t) 
= xZ.~x t(x)'y(rr,.) = ~/(u). Then Ox~x t(x)~(~rO = "~(u) in q3+[0, "V(u)], so 
"Y(Ox~x t(x)x~) = ~/(u), whence @x~x t(x)Trx = u in E, so t E T. • 

Theorem 5.11. E is an interval effect algebra iff the following condi- 
tions hold: 

(i) ker(~j) n G + = {0}, so ker(~) is trivially order-convex and q3 is 
partially ordered by the positive cone 2 + = ssg(3,(E)) = ~(G+). 

(ii) For all p, q ~ E, ",/(p) -< ",/(q) ~ p -< q. 

Proof Suppose (i) and (ii) hold. By (i), ~ is partially ordered with 
positive cone q3 + = ssg('v(E)); hence, by (ii) and Lemma 5.9, E is an interval 
effect algebra. 

Conversely, suppose E is an interval effect algebra. By Theorem 4.2 in 
Bennett and Foulis (n.d.), ~3 is partially ordered by the cone q3 + = ssg(',/(E)), 
q3+[0, "V(u)] is an interval effect algebra, and ",/: E ---> ~J+[0, ",/(u)] is an effect- 
algebra isomorphism. Thus, Condition (ii) holds and ~/is positive, so ker(~j) 
n G + = {0} by Part (vi) of Lemma 5.6, proving Condition (i). • 

6. C O M P U T A T I O N A L  A L G O R I T H M S  F O R  FINITE E F F E C T  
A L G E B R A S  

The results obtained above can be used to formulate computational 
algorithms for dealing with simplicial test groups and finite effect algebras, 
and the resulting algorithms are easily implemented on a computer. We devote 
the present section to a brief outline of a basis for the development of some 
of these algorithms. 
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If X = {xl, x2 . . . . .  Xm} is a finite set, an element f in the simplicial 
group Z x can be represented in the usual way by an m-vector (fl, f2 . . . . .  
f, ,) : = (f(x~), f(x2) . . . . .  f(x,,,)) in Z m. By Lemma 1. I 1, if (Z m, S) is a simplicial 
test group, then the antichain S is necessarily finite and Theorem 4.6 provides 
an effective algorithm for checking whether S is prealgebraic and for comput- 
ing its algebraic closure S-  if it is. 

Example 6.1. For the simplicial group Z 3, let 

S = {(0, 4, 0), (3, 1, 0), (2, 0, 2), (0, 1, 3)} 

Then (Z 3, S) is a simplicial test group, but it is not algebraic because (2, 0, 
2) -< (3, 1, 0) + (0, 1, 3) and (1, 2, 1) = (3, 1, 0) + (0, 1, 3) - (2, 0, 2) 

T. Here ~(S)  = S U {(1, 2, 1)} and ~(S)  is an antichain. Furthermore, 
~ (~ (S ) )  = ~b(S), so S is prealgebraic and T := S-  = S U {(1, 2, 1)} 
is algebraic. 

If (Z% T) is an algebraic simplicial test group, then the T-events in 
(z*)m[0, T] can be computed by listing, for each t ~ T, all vectors v ~ (Z÷) " 
with v --< t, and then removing all repetitions from the list. For instance, in 
Example 6.1, one finds that there are 25 T-events in (Z*)3[0, 7]. 

Let T be an algebraic antichain of  tests in Z".  If e E % := (Z÷)'[0, T], 
the set 'rr(e)' of all supplements of e in (Z*)m[0, T] is calculated by listing 
all vectors of  the form t - e for t ~ T and discarding those that do not 
belong to (Z÷) m. The set "rr(e)' is a perspectivity class in the effect algebra 
I I (Z m, T), and every perspectivity class arises in this way. By choosing any 
f ~ "rr(e)' and calculating Tr(f)', one finds the orthosupplement 'n-(e) of 'rr(f)' 
in I-I(Z', T). One now removes the vectors in the classes 'rr(e) and 'rr(e)' 
from % and proceeds iteratively to calculate the elements of  H(Z" ,  T) in 
orthosupplementary pairs. Of  course, one must check to make sure that the 
classes in such a pair are distinct; if they are not, one has found a "half- 
e lement"  in H(Z  m, T), i.e., an element rr(e) such that 'rr(e) • 'rr(e) is the unit 
in H(Z  m, T). 

Example 6.2. For the simplicial group Z 3 with the algebraic antichain 

T = {(0, 4, 0), (3, 1, 0), (2, 0, 2), (0, 1, 3), (1, 2, 1)} 

obtained in Example 6.1, there are 11 perspectivity classes in the effect 
algebra H(Z 3, T). The classes in orthosupplementary pairs are: "rr(0, 0, 0) 
and rr(0, 4, 0), 'rr(l, 0, 0) and 'rr(2, 1, 0), "rr(0, 1, 0) and rr(1, 1, 1), "rr(0, 0, 
1) and 'rr(2, 0, 1), 'rr(2, 0, 0) and 'rr(0, 0, 2), and the half-element 'rr(0, 2, 0) 
(which is its own orthosupplement). Note that -rr(1, 0, 0), "rr(0, 1, 0), and 'rr(0, 
0, I) are the three atoms in I I (Z 3, T). 
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Once the elements of  I-I(Z", T) are identified, it becomes possible to 
work out the structure of  H(Z",  T) as an effect algebra. For instance, in 
Example 6.2, it is not difficult to see that I I (Z 3, 7) is the polychain C4.3 
(Foulis et al., 1994, Example 4.7). 

If (Z",  7") is an algebraic simplicial test group and E is isomorphic to 
I I (Z ' ,  T), then the universal group ~ of E can be calculated by standard group- 
theoretic algorithms (Hungerford, 1974, pp. 343-345) ,  since a presentation of 
q3 is given by generators corresponding to the standard free basis (1,0,  0 . . . . .  
0), (0, 1,0 . . . . .  0) . . . . .  (0, 0, 0 . . . . .  1) for Z"  with relations corresponding to 
t - s = 0 for t • T and s fixed in T. Thus q3 is a finitely-generated Abelian 
group and hence it is isomorphic to a Cartesian product of  a free Abelian 
group Z r and a finite Abelian group 3~ which itself is a Cartesian product of  
finite cyclic groups. 

Example 6.3. For the algebraic simplicial test group (Z 3, T) in Examples 
6.1 and 6.2, the generators "Yl "= ~/(1, 0, 0), ~/2 := ~(0, 1, 0), and ~/3 "= ~/(0, 
0, 1) of the universal group q3 are subject to the relations 3"yt - 3~/z = 0, 
2~h - 4~/2 + 2"y3 : 0, "71 - 43'~ + 3'y3 = 0, and "y~ - 2"y2 + "/3 = 0 
corresponding to (3, 1, 0) - (0, 4, 0), (2, 0, 2) - (0, 4, 0), (1, 0, 3) - (0, 
4, 0), and (1, 2, 1) - (0, 4, 0), respectively. By standard group-theoretic 
methods, we find that q3 = Z X Z3 with ",/t = (1, 2), "¢2 = (1, 1), and ~/3 = 
(1, 0). If u is the unit in E = [I(Z 3, T), then ",/(u) = (4, 1) as can be seen, 
for instance, by using the fact that 3'(u) = 4"7(0, 1, 0) = 4"Y2 = (4, 4) = (4, 
1). The canonical epimorphism ~: Z 3 ---> q3 = Z x Z3 is given by ~(x, y, z) 
= (x + y + z, a),  where a - 2x + y modulo 3. 

In Example 6.3, ker(~) = {(n - 3m, 3m - 2n, n)ln,  m • Z}, so ker(~) 
O (Z+) 3 = {0} and ~3 is partially ordered by the positive cone ~+ = ~((Z÷) 3) 
= (Z ÷ X Z3)\{(0, 1), (0, 2)}. Furthermore, "¢ satisfies Condition (ii) in 
Theorem 5.11, so I I (Z 3, T) is an interval effect algebra isomorphic to ~+[(0, 
0), (4, i)]. 

7. P R O L E G O M E N O N  T O  A T H E O R Y  OF  Q U O T I E N T S  

In this final section, we briefly sketch some ideas that may be useful 
in the development of a theory of  quotients for test groups, effect algebras, 
and interval effect algebras. 

An ideal in an effect algebra E is a subset I C_ E such that (i) 0 e I, 
(ii) p , q  e E , p < q , q  c I ~ p  e L a n d ( i i i )  p , q  E lw i thp_ l_  q ~ p O  
q • 1. We consider the problem of formulating an adequate definition of  a 
"quotient" effect algebra Eli. For such a definition, there are a number of 
desiderata; among the most important of these are perhaps the following: 
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1. The definition should be compatible with the standard notion of a 
quotient of an orthomodular lattice by a p-ideal (Kalmbach, 1983). 
In particular, it should be compatible with the standard construction 
of a quotient of a Boolean algebra by a Boolean ideal. 

2. If E and F are effect algebras and I is the ideal in E X F consisting 
of all ordered pairs (0, f )  with f e F, then (E X F)/I should be 
isomorphic to E. 

3. There should be a "natural morphism" E ---) E/I reducing in the 
case of an orthomodular lattice or a Boolean algebra to the usual 
natural homomorphism. 

4. If to is a probability measure (or state) on E (Foulis et al., 1994) 
and I = {p e Elto(p) = 0}, then to should induce in a natural way 
a probability measure to* on E/I that is strictly positive in the sense 
that 0 < to*(q) for all 0 4~ q e E/I. 

5. Quotients should interact with tensor products (Bennett and Foulis, 
1993; Dvure~enskij and Pulmannov~i, 1994a; Foulis et al., 1994; 
Dvurerenskij, 1995; Gudder, 1995) more or less as they do in the 
category of modules over commutative rings (e.g., Bourbaki, 1958, 
Section 1, Proposition 6). 

Because of the close connection between test groups and effect algebras, 
it seems appropriate to begin by formulating a definition of ideals and quo- 
tients for test groups. 

Definition 7.1. Let (G, T) be a test group, let H be a directed order- 
convex subgroup of G, let "q: G ---) G/H be the natural group epimorphism, 
and consider G/H to be partially ordered with (G/H) + := ~I(G +) as its positive 
cone. We say that H is a T-ideal in G iff rI(T) is an antichain in G/H. 

If H is a T-ideal in G, then H = (H n G÷[0, 7]) in Lemma 1.9, so H 
is actually generated by a set of T-events. 

Lemma 7.2. If (G, T) is a test group, H is a T-ideal in G, and "rl: G ---) 
G/H is the natural group epimorphism, then (G/H, "q(T)) is a test group and 
• q(G+[0, 7]) C (G/H)+[0, rI(T)]. 

Proof  Because G is directed and -q is surjective and order-preserving, 
G/H is directed. Also, since rl is order-preserving, ~(G+[0, 7]) C (G/H)+[0, 
rl(T)], so 

(G/H) ÷ = rl(G ÷) = "q(ssg(G+[0, T]) C_ ssg(xl(G÷[0, T])) 

C ssg((G/H)+[0, "q(T)]) 

and (G/H)+[0, -q(T)] is generative. • 
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One might expect that rt(G+[0, T]) = (G/H)+[0, TI(T)] would hold in 
Lemma 7.2, but suitable counterexamples show that this need not be the 
case. Also, even if (G, T) is algebraic, (G/H, xI(T)) need not be algebraic. 

Definition 7.3. If (G, T) is a test group, H is a T-ideal in G, "q: G --) 
G/H is the natural group epimorphism, and the test group (G/H, rI(T)) is 
prealgebraic, we define the quotient test group (G, T)/H "= (G/H, -q(T)-). 

A connection between ideals in effect algebras and T-ideals is provided 
by the following theorem. 

Theorem 7.4. Let I be an ideal in the effect algebra E, let X C E\  {0} 
be a set of generators for E, let Y := X\I ,  and let (Z Ix1, T) be the multiplicity 
group for E with respect to X. Then H = {f  E Z txl If(y) = 0 for all y E 
Y} is a T-ideal in Z lxl. 

Proof By Theorem 1.10, H is an order-convex directed subgroup of 
Z lxl. If f ~ Z Ix1, let fy  be the restriction of f to Y, noting that f ~ fv  is a 
group epimorphism with kernel H from Z txq onto Z t~q and (Z+) t~q is the image 
of (Z+) txl u n d e r f  ,--. fv.  Therefore, we can identify ZtXq/H with Z Ivl, Vl with 
f ~ fr ,  and xl(T) with Ty := {trlt E T}. Suppose s, t E Twith  sv <-- t~and 
let p := Ox~t s(x)x, q := Gx~t t(x)x, a = Gy~V s(y)y, and b := O:,~v (t(y) 
- s(y))y. Then p • a = q • a ~) b = u and, since I is an ideal, p, q E I. 
By the cancellation law in E, p = q • b, so b - q E I, and it follows that 
b ~ I. I f y  ~ Y and s(y) < t(y), then y <- (t(y) - s(y))y <- b ~ I, so y 
I, contradicting the definition of Y. Therefore, y ~ Y ~ s(y) = t(y), so sr 
= tr and Ty is an antichain in Z In. I 

Availing ourselves of the ideas in the proof of Theorem 7.4, we formulate 
the following general definition of the quotient of an effect algebra E by an 
ideal I. 

Definition 7.5. Let X C_ E\{0} be a set of generators for the effect 
algebra E and let I be an ideal in E. Let Y :=  X\I; for each f ~ Z lxq, let f r  
be the restriction of f to Y. If T is the set of multiplicity functions for E with 
respect to X, let Tr "= {tvlt ~ T}. If the multiplicity group (Z Irl, Ty) is 
prealgebraic, we define the quotient effect algebra Ell := H(Z lvl, T~v). 

Example 7.6. Let T C_ Z 5 be the algebraic antichain consisting of (0, 1, 
0, 1, 1), (1, 1, 0, 0, 0), and (0, 0, 1, 1, 0). Then E := II(Z 5, T) consists of 
eight perspectivity classes as follows: three atoms 'rr(0, 1, 0, 0, 0), "rr(0, 0, 
0, 1, 0), 'rr(0, 0, 0, 0, 1); their respective orthosupplements w(1, 0, 0, 0, 0), 
';r(0, 0, 1, 0, 0), "rr(0, 1, 0, 1, 0); and the zero and unit. In fact, E is the eight- 
element Boolean algebra. Let I be the ideal in E consisting of "tr(0, 0, 0, 0, 
0) and "rr(0, 0, 0, 0, 1). To pass to the test space (Z 4, Tv) we remove the last 
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component from each vector in T to obtain the antichain Tv consisting of  (0, 
1, 0, 1), (1, 1, 0, 0), and (0, 0, I, 1) in Z 4. But Tr is not algebraic, since 

(1, 1, 0, 0) + (0,0,  1, 1) - (0, 1,0, 1) = (1,0,  1,0) ~ Ty 

However, ~(Ty) = Tv L9 {(1, 0, 1, 0)} is algebraic, so T~, is prealgebraic 
with T;v = ~(Tv). The quotient E/1 := Iq(Z 4, T~v) is the four-element Bool- 
ean algebra. 

The following alternative definition of quotient suggests itself in the 
category of interval effect algebras. 

Definition Z 7. Let ~ be the universal group of the interval effect algebra 
E with unit u, and identify E with q3+[0, u]. If I is an ideal in E, let H = 
ocs(/) and let "q: q3 ---> q3/H be the natural group epimorphism. Since H is 
order-convex, q3/H is partially ordered by the positive cone (q3/H) + := Xl(q3+). 
Define the quotient E/I in the category of  interval effect algebras to be 
(q3/n)+[0, ~(u)]. 

Example 7.8. We reconsider Example 7.6 from the viewpoint of  Defini- 
tion 7.7. The eight-element Boolean algebra has Z 3 as its universal group 
and may be identified with E := (Z+)3[(0, 0, 0), (1, 1, 1)]. Let I be the ideal 
in E consisting of (0, 0, 0) and (0, 0, 1). Then H := ocs(/) is the cyclic 
subgroup {(0, 0, z) lz ~ Z} generated by (0, 0, 1) and the quotient group 
23/[-[ may be identified with Z 2 in such a way that the natural epimorphism 
"q: Z 3 ---> Z3/H iS identified with the mapping (x, y, z) '--" (x, y). Thus E/I 
may be identified with (Z+)~-[(0, 0), (1, 1)], which is the four-element Bool- 
ean algebra. 

In a forthcoming paper, we study the articulation among the three defini- 
tions of  quotient given above as well as the question of the satisfaction of  
desiderata 1-5. 
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